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1. I n t r o d u c t i o n  

Hemivariational inequalities have been introduced by P.D. Panagiotopoulos [15], 
[16] as the variational formulation of an important  class of unilateral or inequality 
problems in Mechanics. Hemivariational inequalities then appear as a mathemati-  
cal formulation of variational principles for nonconvex, nonsmooth energy problems. 
They are based on the concept of generalized gradient introduced by F. Clarke and 
on the corresponding mechanical notion of non convex superpotential [15]. It is 
worthwhile to notice that  hemivariational and variational hemivariational inequal- 
ities have been proved very efficient to describe the behaviour of several complex 
structures such as multilayered plates, adhesive joints, composite structures, e tc . . .  

A complete discussion about the physical problems treated by this theory is out 
of scope of the present work. The interested reader is refered to [12-18] for more 
details concerning the applications. Our aim in this paper is only to provide neces- 
sary and sufficient conditions for the existence of solutions of a general variational 
hemivariational inequality. 
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Let V be a real separable Hilbert space with topological dual V* such that  

v c z ~(~) c v*, 

where ~2 is an open hounded and regular subset of IR ~. We assume that  the injection 
V ~ L2(12) is dense and compact. The norms in V and in L~(g]) are denoted by 
[[" [I and 1[. 1[c2, respectively. 

Let a : V x V --~ IR be a continuous bilinear form. We introduce the mapping 
A E L(V7 V*) (where L(V, V*) denotes the space of bounded linear mappings from 
V into V*) defined by 

< Au, v >:= a(u,v),  Vu, v E K 

We denote by R(A) the range of A, by Ker A the kernal of A, i.e., Ker A ---- {m E 
V l A(m) : 0} and by A* the corresponding transpose operator of A. It is also 
assumed that  a is semicoercive, i.e., 

there exists c > 0  such that a(u,u) > c.llu]l 2, V u E K e r ( A q - d * )  • 

identically equal to Let f : V --* ~[ be a L@sehitz function near m, i.e., there exists 
a neighbourhood N(m) of m and a constant C > 0 depending on m such that  : 

II(u)-I(v)l > C . l l ~ - v l l ,  V u , , E N ( ~ ) .  

Suppose f is Lipschitz near m. Then, the Clarke generalized directional derivative 
of f at m in the direction d is denoted by f~ d) and is defined by 

f~ d) := lim sup f(m + h + td) - f(m + h) 
~J.0, h--~0 

The generalized gradient of f at m is denoted by a~  and is defined to be the 
subdifferential of the convex function f~ d) at 0. That  is 

a ~  := {~ e v* I < ~,  d > > f~  dr, Vd E V}. 

Let f be LipschitT. near m. We say that  f is 0 ~ - regular at m, if the Clarke 
derivative agrees with the standard directional derivative: 

f~ d) = lim f(m + td) - f(m) 
ts t 

The class of 0 ~ - regular functions includes the class of convex functions and the 
class of maximum-type functions, i.e., functions of the type f ~ max{~1, �9 .-, ~m}, 
where ~ (i : 1,..., m) are smooth functions. 

Let us recall some basic well known facts about the Clarke generalized directional 
derivative [8]: 
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L e r n m a  1 (i) The function d --~ f~  (~, d) is finite, positively homogeneous, subad- 
ditive and then convez; 

(it) V$ E V,  there ezists a constant C > 0 such that : 

[f~ > C.[Id]], Vd E X; 

5it)  The function d --* f~  d) is continuous; 

5v)  i f ( z , - d )  = ( - f ) ~  

(v) For each d E V, 

f~ d) = m a x { <  (,  d > [ ~ E v0cf(~)); 

(vQ I f  z is a local min imum for f ,  then 

0 E Ocf (z ) ;  

(vii) f ~  d) is upper semicontinuous as a function o f ( z ,  d). 

Throughout  the paper, we suppose that  the assumptions described below are 
satisfied : 

(7/-/1) a : V x V -~ ]R is bilinear, continuous and semicoercive; 

(7/2) d imKer  ( A + A * )  < +f~; 

(7-/3) �9 : V --* (-f~, +f~] is a convex lower semicontinuous functional such that  
r  = 0; 

(7/4) j : ]R --~ ~ is Lipschitz continuous, i.e., there exists C > 0 such that  

IJ( ~ ) - j ( y ) t _ < k I ~ - y h  f o r a l l z ,  y E l R ;  

j(0) LI(e). 

We adopt the notation " --. " and " ~ " to denote the convergence with respect 
to the strong and the weak topology, respectively. 

A variational hemivariational inequality is the problem of finding an element 
u E V such that  

a ( u , v - u ) + f ~  j ~  + ~ ( v ) - ~ ( u )  > < f , v - u > ,  VvEV.  

In the rest of the paper, this problem will be denoted by (7)). 

The following lemma will be useful: 
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L e m m a  2 Suppose that assumptions (n4)  and (~5)  are verified. Let  us denote 
for each u ~ L2(~):  

I(~) = ] j(~) d~. 
im 

dn 

Then 

(i) I is defined and L@schilz  coniiuuous on L2(f2); 

(ii) i~ v) i, ~oeak~y urn," ,e,~iconti,~ous o,~ Y as a y~nction of (~, ~), i.e., 

un ~ u, vn ~ v ~ l i m s u p I ~  < I ~  (1) 
? l  ---~ ~ -  OO 

5ii) f j~ > I~ W ~ L'(~); 

(iv) f ,  Ij~ _< C-I1~11 (C > o) w e v; 

(v) z~ .)I~ > (I Iv)~ .). 

P r o o f .  (i). If/z denotes the n-dimensional Lebesgue's measure, then by assumption 
(7/4) , we have 

IZ(~) - z(~)l _< k. v ~ ( ~ ) l l ~ -  ~11~, w , .  e z~(~). 

By virtue of (7-/s), then I(0) < +oo and thus I is defined and Lipschitz continuous 
on L2(f~). 

(it). I is locally Lipschitz and thus by Lemma 1 (6), the mapping i0(.; .) is upper 
semicontinuous on L2(f~) x L2(f~). Therefore, we conclude to the weak upper 
semicontinuity on V x V by using the compact embedding V ~ L2(~2). 

(iii). See [8] (Theorem 2.7.5). 

(iv). We have, 

f tj~ v(~))l dn _< f ,  k. Iv(~)l dn < k. v~(n) .  I1"11~- 

Moreover, due to the continuity of the embedding V r L2(~), there exists a 
constant fl > 0 such that 

II~,IIL ~ _ ~-I1~11, vv ~ v, 

and we get the desired result by setting C := kflv/-fi(f~ ). 

(v). See [7]. D 
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Let X be a real Banach space and let G : X -~ ]R U +{oo} be a functional. We 
call recession function of C ([1]), the function 

G#(m) := l i m i n f  G( tv )  
:--.+# t 

= inf l i m i n fG( t ~ vn )  
:~-.# n-.+oo tn 

The te rm "recession function" has been used previously in convex analysis [19] 
to denote the functional @oo associated to a convex lower semicontinuous function 
g/ :  X --* ]R U {q-oo} supposed to be proper, i.e. such that ,  

Dom @ := {m E Xl @(m) < +co} 

is nonempty. In this case, 

xl/oo(m) :--- lim 9(m0 + tm)  - q(mo) 

where m0 is taken arbitrari ly such that  9(m0) < +oo. 

In the general case, Baiocchi et al. [3] introduced a notion of topological reces- 
sion function related to the concept of recession function associated to a nonlinear 
operator  in the sense of Br~zis and Nirenberg [4]. Recently, Attouch et ~l. [2], used 
another  concept of recession operator in order to develop a new approach of the 
solvability of a generalized equation governed by a maximal  monotone operator. 

Finally, let us recall that  the recession cone Koo of a closed convex subset K of 
X is the set of those m for which there exist sequences {tn},~EN and {m,~},~EN C K 
such that  lim t,~ = +oo and m = lim t~lm,~. 

n--~-bco n-*q-oo 

It  is easy to see that  K# ---- Dora (@g)#, where for a convex subset C, ~ c  denotes 
the indicator funct ion of C and is defined by 

0 if m E C, 

~c(m)  
+oo, i f m ~ c .  

These different concepts of recession funtion were widely used in [1] to prove the 
solvability of a general class of noncoercive, nonmonotone and nonlinear variational 
inequalities. In this paper, we introduce a concept of recession function associated 
to the Clarke generalized directional derivative of a locally Lipschitz function and 
we show how this notion permits  to derive new results concerning the solvability of 
Problem (7)). 

Defini t ion 1 Let  j : ]R --, ]R be a locally Lipschitz  function.  We introduce and 
denote by {jo}# the recession function, associated to the funct ion  G : V --+ FL and 
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t 
defined by ~ H G(z)  := Ja _jo($,  _~)  dr2, i.e. : 

{J~ = liminf f - j ~  d~2 

= liminf f --(--j)~ v)dl2 
~:{ J .  

Remark that if j is 8~-regular on JR, then 

{J~ = liminf f j~ v) dr2. 
~:P= J- 

2. Necessary condi t ions for the  existence of solut ions 

The following propositions give necessary conditions for the existence of the solu- 
tion. 

P ropos i t ion  1 Assume that assumptions ( n l )  through (7-15) are satisfied. Let u 
be a solution of Problem (79). 

(i) Then 
I "  

< f , q > >  Ja j~  Yq E Ker A. 

Moreover, there ezists a constant c > 0 such that : 

< f , q > >  I~oo(q)l+c.llqllL1 , VqEKerA,  

~here I1" IIL~ d e n o t e s  the n o r m  in Ll( f~) ,  

50 If 

(A ) | ~ is odd 

(B) j is ~-regular 

then 
f,q>=J j~ Vq EKerA.  < 

(iii) Let K be a nonempty closed convez set. I f  ~ is the indicator function @g of a 
closed convez set K ,  then 

/aj ~  > < f , q > ,  V q E K ~ n K e r A .  
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Moreover, there ezists a constant c > 0 such that : 

< f , q > >  c ' l l q l l~ ,  q E K r  

P r o o f .  (i). Let u be a solution of (79). Then 

a(u,v-u) T / . j~ > < f , v - u  >, 

Let q E Ker A and set v := u +  q. We have 

/ n j ~  ~.(u) < f ,q  >,Vq E Ker A. ~(u + q) > 

Thus, [5], [Proposition 1, ii] 

/ a j ~  < f ,q  Vq E Ker A. >_ >, 

Moreover 

By assumption (7/4) 

and thus 

Yv EV, 

< f ,q > > fsj~ -4-Iffoo(q)l. 

IJ~ > klqh 

< f ,q > > k-]iqi]Llq-i~oo(q)l.  

(ii) By (i) we have also 

~ j~ - < f , q  >, Vq E Ker A. 

Since q)oo is odd, then ~boo ( -q )  -= -ffo~ (q). Combining the facts that  by Lemma 1 
(iv), jo (u, -q) = (_j)o (u, q) and that if j is ~-regular then ( - j )~  (u, q) = _jo (u, q),we 
obtain: 

faj~ < f ,q  Vq KerA.  (2) > >, E 

Thus, (2) combine to (i), yields (ii). 

(iii). If ~ is the indicator function of a nonempty closed convex subset K, then 
u E K and 

a ( u , v - u ) + ~ j ~  >_< f , v - u > ,  V v E K .  
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I fqEKoo t h e n v : = u + q E K ,  sothat  

/ j~ d~2 > < f , q > ,  Vq E Koo MKer A. [] 

Let fl E Lzo~176 (~) and suppose that j is obtained from fl by a simple integration, 
ioeo, 

j(()  := fl(t)dt. (3) 

We assume that there exists two constants ~_ E ~ U {-or and f~+ E ~t U {+cr 
such that 

f~_ > f~(~) > f~+, v~ E ~ .  

We have the following result: 

P ropos i t ion  2 Let j be defined by (3). Let u, q E V, we have : 

f fl_ .q+-fl+ .q- d~2> /aj~ f Z+q+-fl_ .q-d~2, 

where q+ := sup{O, q} and q := sup{O,-q}. 

Proof.  

/aj~ d~ = fa ( l i m s u p  1/~ f~'+~+~'q~(t)dt I d~ 
\~,~o+ , u ~ o  a,.,+h / 

where 

= fu+h+~,q ) /~+ ( l i m s u p  1/:k fl(t)dt d~ 
\~----~O+ ~h---*O d~+h 

+ ~ _  ( l i m s u p  1/)~ -~(t)dt d~ 
\)~---*0+,h---* 0 Ju+h-t-)~q 

~2 + : = { z E f l [ q ( z )  > 0} and ~2- : = { z E f ~ i q ( z ) < 0 } .  

It is then easy to see that 

/J~ dr2 > /~+~+'qdf2+/~_t~-'q dr2 

= /a1~+.q+-~_.q-di2. 

Similarly, we prove that 

/~ 13- .q+-13+.q- d~2 > / j~ [] 

Combining Proposition 1 and Proposition 2, we derive the following result: 
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P r o p o s i t i o n  3 Let j be defined by (3). If  u is a solution of Problem (7)) then the 
following relations hold true. 

(i) 

fn/3+ �9 q+ - / 3 _  �9 d~ + ~oo (q) < f ,  Vq E Ker A; q- _> q >, 

(ii) If  ($,~ is odd, then 

fa/3- 'q+-fl+'q-dl2+ff~(q) > < f , q > >  Yq E Ker 

(iii) Let K be a nonempty closed conve~ set. If  �9 := qJg then 

f /3+ .q+ -/3_ .q-d~2 < f ,q  ,Vq E K ~  NKer A. > >, 

R e m a r k  1 Let us define 

and 

Suppose that  

/3(-oo) := lim sup/3((), 

/3(+oo) :-- lira inf/3(~). 
~-.+oo 

Then a necessary condition for the existence of a solution u E V for Problem 
(7 :)) when @ = 0 is the following one which had already been obtained by P.D. 
Panagiotopoulos [13]: 

/ / 3 ( - o o ) ' q + - / 3 ( + o o ) ' q  - d~ > < f ,q  > > l/3(~-~176 - d~, Vq E Ker A. 
dn J~ 

3. Suf f ic ien t  c o n d i t i o n s  fo r  t h e  e x i s t e n c e  o f  so lut ions  

T h e o r e m  1 Assume that assumption (7-Q) through (7-15) are satisfied. If 

{J~  > < f , w > ,  V w E K e r ( A + A * ) \ { 0 ) ,  

then Problem (7) ) has at least one solution, 

P r o o f .  Part  1. Let C' be a nonempty weakly compact subset of V. Suppose that  
0 E C and define 

g(u,v)  := a ( u , u -  v) - X l ~ ( u , v -  u) + ~(u)  - ~ ( v ) -  < f , u -  v > .  

We remark that  : 
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(a) ~(0) = 0 < +oo 

(b) g(~,~) > 0, for a11~ �9 C, 

(c) g(~, .) is concave for all ~ �9 C. 

Using assumptions (7/1) through (~5) and Lemma 2 ii), then g(., v) is weakly lower 
semicontinuous on V for all v �9 C. Thus, by the Ky-Fan inequality [ii], there exists 
u* �9 C such that 

g(u*, v) > O, Vv �9 C, i.e., 

a(u*,v-u*)- l- I I~(u*,v--u*)-t-@(v)-@(u* ) > (f ,v--u*), Vv �9  
Thus, by Lemma 2 (iii) and (v), the following relation is satisfied for all v �9 C: 

(4) 

Part  2. Let define 

R :  = { ~  �9 Xl  3 ~  �9 V, ~ := I1~11 -" +oo ,  ~ := ~ / 1 1 ~ 1 1  - -  ~ and 

a(un, un) -- f a  j~ --un) d~ --}- @(un) > < f ,  un >}. 

We will prove that  if R is empty  then Problem (7)) has at least one solution. 

If Bn :-- {v �9 V I Ilvll > n}, by applying Part  1, there exists u~ �9 B,~ such that  

~ ( ~ , ,  - ~ )  + f .  j ~  - ~ )  d a  + ~ ( , )  - ~ ( ~ )  _> < f ,  ~ - ~ >, W �9 B~. 

We prove tha t  Ilu~ll < k for some integer k. Indeed suppose on the contrary that  
Ilu,~ll = n, for each n �9 IN \ {0}. On relabeling if necessary, the sequence defined 
by w,, := n-lu,~ ~ w and satisfies 

a(u,~,un) - / j ~  + @(u,~) > < f,u,~ > .  

This implies w �9 R and a contradiction. 

We prove now that  uk solves (io). Indeed, for each y �9 V, there exists e > 0 such 
that  u ~ + e ( y - u ~ )  �9 B~. T a k c e  < [ k - I l u t : l l ] / [ l l y - u ~ l l  ] i f y a u ~  and e - -  1 if 
y -- u~ and put v -- u~ + e ( y -  u~) in (4). Then we have 

e.,~(~.~,y-,,~)+e, f j~ > e. < f , y - ~  >. 

Hence, by using thc convexity of @, we derive 

~,~) + f jo ( ,~ ,  y _ ~,~) d~  + ~(y)  - ~(u~) > < f ,  y - ,,~ >, Vy �9 Y. a(ulr , y 
.l a 
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Par t  3. It  remains  to prove tha t  R is empty.  Suppose on the contrary,  there exists 

a sequence {u,~},~eN such tha t  un e V, ~n :=  Ilu~ll -~ oo, ~ := ] l~l l -~u~ ~ ~,  
and 

f,. + e(,,,,) > < f,u,~ > .  (5) 

Since (I) is a proper  lower semicontinuous function, there exists O~ 1 ~ 0 and a2 E lit 
such tha t  

�9 (~) > - a ~ l I ~ l I  - . ~ . ,  w ~ y .  

We have 

l iminfa(w,~, w , , ) + l i m  i n f -  f j ~  d ~ 2 + l i m i n f ( - a l ] [ u , ~ i ] - a 2 ) / t ~  > O. 
n - - * + o o  n--} + o o  j~, n - - } + o o  

By L e m m a  2 (iv), we have 

a j ~  -~,~) /~ da 

Thus  

so tha t  

> c .  I I~ , , l l / t~  > ~"  I I~ , , l l / t , ,  = d r , , .  

--e/~ > - f .  ; (u~,  -u~)/t~ dn > c/~, 

,,--, +oolim inf - / ~  j~ (u~, - u ~ ) / ~  df~ = O. 

Thus  liminfa(w,~,w,~) = 0, and on relabeling if necessary, we can suppose tha t  
~--} + o o  

w,~ --* w E Ker (A + A*), [[w[[ = 1 (see [10] for more  details). Consider (5) for this 
subsequence, and divide by in. We obtain  

l im infa(t,~w,~, w,~)+lim i n f -  f j~ -w,~) d ~ + l i m  inf~(t,~w,~)/t,~ > < f,  w,~ >,  
n-,+oo n--}+oo Jn n---,+oo 

and thus 

{J~ + ffoo(w) > < f ,w  >, 

which is a contradict ion.  [] 

P r o p o s i t i o n  4 Le~ j be defined by (3). We assume thai 

(~) - o o  </3(-oo)  > ~(~) > ~(+oo) < +oo, v~ e ~ ,  

(b) ~ ~ C~ R)), fo~ some • > 0, with B(0, R) := {~ ~ ~1 I~1 > R). 

Then 

(i) j is Lipschitz continuous; 
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50 j(0) e L~(n); 

5~) (J~ >_ / a  ft(+oo) �9 q+ - f~(-cr �9 q-  dl2. 

P r o o f .  

Part (i). Let z, y 6 JR. Clearly, 

lY(~) - J (y) l  > m ~ ' l : l ~ ( - o o ) l ,  t~'(+oo)13"- I~ - yl. 

Part (ii). By (3), j(~) = tjo ~ 

Part (iii). 

~(t)dt. T h u s , / a  j(0) d~ = 0. As a result, j(0) 6 Ll(i2). 

{S~ = inf l iminf [ - j~ 
q,,'--*q n-.-~+oo J a  

= inf lim inf - l imsup-1 / ik  f~(r)dr 
q,,--,q n-~+oo Jn :~--.o+ \Jt,~q,,+h 

~ ,, .--* + oo h --* O 

= inf l~m~nf lim inf f~(r)dr dfL 
~ ~: -~ xh~,~ \I/'X J,,,q,,+h 

d~ 

f 
Let qn 6 V, t,~ --~ oo such that q,~ ~ q in V, L- ' [ -J )~  q'~'q'~) d~ 

{J~  Since V is compactly imbedded in L2(t2), q,, --* q in L2(~). Extracting 
a subsequence, we can always assume that q,,(z) --* q(z) a.e. on t2 and that there 
exists some fixed function h 6 L2(~) such that Iq,~t > h, for each n. 

Let define 

f 
t~q~  +h+,Xq~ 

f~ := l iminf 1/A fl(r)dr.  
:k--~0+,h--*0 J t~  q= + h 

It suffices to observe that 

% ~ max{l~(-oo)l, If~(-Foo)l}. Ihl. 

Indeed, if q,~ > 0, then If,,] > I~(+~)1"  Ihh and if q,~ < 0, then If~l > 
If~(-oo)l'lhl. A simple application of the Lebesgue dominated convergence Theorem 
then yields: 

/ n  [~,,,,,+h+~q,, 
lim inf lim inf 1/A /~(r) th-dn 
n---*oo A- - -~O+,h- -~O J t ~ q ~ + h  

f t~q~ .+h . . i -Aq~  
> [ lim inf 1/A ~(r)drdl2. 

J f l  n--*oo,A--.tO+,h--*O J ' t~q~+h  
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Set 
n+ := {~ �9 nl q(~) > 0}, 

a -  := {~ �9 nl q(~) < 0}, 

and 
n o := {~ �9 al q(~) = 0}. 

�9 On ~+ and for n large enough, by the Mean Value Theorem we have, 

q~+h 

for some ~n �9 [tnqn + h, tnq~ + h + Aqn]. Since (n ~ oo,we derive 

+ A..-.~O +, h--*O dt~.q~,+h + 

�9 On ~ -  and for n large enough : 

for some ~,~ �9 [t,~q~ + h + Aq~, t~q~ + h]. Since ~,~ ~ -0% we derive 

jo r fo Jo l iminf  1/~ fl(T)dTd~2 > 13(-oo).qd~ = - t3(-oo).q- d~2. 

�9 O n  ~2~ 

L/n l iminf  1/A [,,.q~+h+~q~ j3(T)dTd~ 

Ja  liminfJq~Jd~2 0. > max{ l~( -~176176  o ~-~oo = 

Thus 

{J~ ) >_ ]n /3(+oo)-  q+ - / 3 ( - o o ) .  q-dO. 

C o r o l l a r y  1 Let j be defined by (3). We assume that 

5) - ~  </3(-oo) > ~(~) > ~(+oo) < +oo, v~ �9 ~ ,  

5i) ~ �9 C~ R)), for some R > O. 

A,sume that ass~mvtion, (~1) th~ouah (~3) a~e satisfied 

[] 
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Y 

(A) / ~(+oo) .q  + - f l ( - o o ) . q -  d~2T~oo(w) 

then Problem (7)) has at least one solution. 

> < f , w  > , V w  E Ker  ( A + A * ) \ { 0 } ,  

R e m a r k  2 (i) I f  @ is posi t ive  and  pos i t ive ly  homogeneous  of order  1 then  r  (w) = 

(ii) I f  �9 is pos i t ive  and  pos i t ive ly  homegeneous  of order  a > 1 then  ~oo(W) ---- 
"~Ker r and  cond i t ion  (A) reads  as fo l l ows :  

(A') / n f l ( + o o ) . q + - ~ ( - o o ) .  q-  d~  > < f , w  >, Vw 6 Ker ( A + A * ) N K e r  @\{0}. 

(iii) I f  �9 is pos i t ive ly  homegeneous  of order  1 > a > 0 then  ~oo(w) = ~/Dom ~(w) 
and  cond i t ion  (A) reduces to the  fol lowing fo rm : 

(A") / f l (+oo) .q+- f l ( -oo ) .q -  d~  > < f ,  w >, Vw e Ker ( A + A * ) N D o m ~ \ { 0 } .  
dn 
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